15228 measured reflections

 $R_{\rm int} = 0.041$

3215 independent reflections

2893 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(S)-Methyl 2-(1,3-dioxoisoindolin-2-yl)-3-(4-iodophenyl)propionate

Zhou Wu,* Peng Shen and Shende Jiang

School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China Correspondence e-mail: zwu@tju.edu.cn

Received 31 October 2007; accepted 4 November 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.009 Å; disorder in main residue; R factor = 0.041; wR factor = 0.108; data-to-parameter ratio = 13.5.

In the chiral title compound, $C_{18}H_{14}INO_4$, the dihedral angle between the aromatic ring planes is $54.0 (3)^{\circ}$. The crystal packing is stabilized by $C-H\cdots O$ interactions. The methoxy group is disordered essentially equally over two positions.

Related literature

For related literature, see: Paquette et al. (1997); Hutton (1997).

Experimental

Crystal data

C ₁₈ H ₁₄ INO ₄
$M_r = 435.20$
Hexagonal, P61
a = 10.1246 (6) Å
c = 29.528 (3) Å
V = 2621.3 (3) Å ³

Z = 6Mo $K\alpha$ radiation $\mu = 1.85 \text{ mm}^{-1}$ T = 294 (2) K $0.26\,\times\,0.20\,\times\,0.18~\mathrm{mm}$

Data collection

```
Bruker SMART CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 1997)
  T_{\rm min} = 0.634, T_{\rm max} = 0.732
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.108$	$\Delta \rho_{\rm max} = 1.24 \text{ e } \text{\AA}^{-3}$
S = 1.07	$\Delta \rho_{\rm min} = -0.46 \text{ e} \text{ \AA}^{-3}$
3215 reflections	Absolute structure: Flack (1983)
238 parameters	1383 Friedel pairs
29 restraints	Flack parameter: 0.02 (3)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C12-H12\cdots O2^{i}$ $C8-H8\cdots O1^{ii}$	0.93 0.93	2.43 2.46	3.236 (8) 3.379 (8)	145 170

Symmetry codes: (i) $y, -x + y + 1, z - \frac{1}{6}$; (ii) $x - y + 1, x, z + \frac{1}{6}$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2624).

References

Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Hutton, C. A. (1997). Tetrahedron Lett. 38, 5899-5902.

Paquette, L. A., Mitzel, T. M., Isaac, M. B., Crasto, C. F. & Schomer, W. W. (1997). J. Org. Chem. 62, 4293-4301.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o4871 [doi:10.1107/S1600536807055766]

(S)-Methyl 2-(1,3-dioxoisoindolin-2-yl)-3-(4-iodophenyl)propionate

Z. Wu, P. Shen and S. Jiang

Comment

The title compound, (I), is an intermediate in the synthesis of β -hydroxyphenylalanine (Hutton, 1997), a compound which occurs in a wide range of important biologically active peptides. A view of the molecular structure of (I) is shown in Fig. 1. A 11 bonds lengths and angles are normal.

The dihedral angle between the aromatic ring planes is 54.0 (3)°. The dihedral angle between the mean planes of C9/C17/O3/O4 and the benzene ring is 73.06 (69) Å. That between C9/C17/O3/O4 and the 3a,7a-dihydro-isoindole-1,3-dione ring is 71.85 (34) Å.

Neighboring molecules in the crystal are linked together via weak C-H···O hydrogen bonds (Table 1, Fig. 2).

Experimental

To a suspension of 4-iodo-*L*-phenylalanine methyl ester hydrochloride (0.49 g, 1.4 mmol) and phthalic anhydride (0.38 g, 2.6 mmol) in toluene (20 ml) was added triethylamine (0.5 ml, 3.6 mmol) and the resulting mixture was heated to reflux for three hours with stirring in an oil-bath at 413–418 K. After cooling to room temperature, the solvent was evaporated and the residue was washed with water, then extracted with ethyl acetate (2×20 ml). The combined organic layers were dried (Na₂SO₄) and evaporated to give a crude product which was purified by column chromatography on silica gel with petroleum ether-ethyl acetate (2:1 v/v) as eluent to give the product (0.60 g, 97%) (Paquette *et al.*, 1997). Crystals of (I) were grown by slow evaporation of solution of ethyl acetate and petroleum ether (1:4 v/v) at room temperature over a period of 3 days.

Refinement

The H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radius.

Fig. 2. The packing diagram for (I).

Methyl 2-(1,3-dioxoisoindolin-2-yl)-3-(4-iodophenyl)propionate

Crystal data	
C ₁₈ H ₁₄ INO ₄	Z=6
$M_r = 435.20$	$F_{000} = 1284$
Hexagonal, P6 ₁	$D_{\rm x} = 1.654 {\rm ~Mg~m}^{-3}$
Hall symbol: P 61	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 10.1246 (6) Å	Cell parameters from 6976 reflections
b = 10.1246 (6) Å	$\theta = 2.3 - 26.0^{\circ}$
c = 29.528 (3) Å	$\mu = 1.85 \text{ mm}^{-1}$
$\alpha = 90^{\circ}$	T = 294 (2) K
$\beta = 90^{\circ}$	Block, colorless
$\gamma = 120^{\circ}$	$0.26 \times 0.20 \times 0.18 \text{ mm}$
$V = 2621.3 (3) \text{ Å}^3$	

Data collection

Bruker SMART CCD diffractometer	3215 independent reflections
Radiation source: fine-focus sealed tube	2893 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.041$
T = 294(2) K	$\theta_{\text{max}} = 26.5^{\circ}$
ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1997)	$h = -12 \rightarrow 12$
$T_{\min} = 0.634, \ T_{\max} = 0.732$	$k = -10 \rightarrow 12$
15228 measured reflections	$l = -23 \rightarrow 37$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.041$	$w = 1/[\sigma^2(F_o^2) + (0.0545P)^2 + 3.4009P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.108$	$(\Delta/\sigma)_{\rm max} = 0.002$
<i>S</i> = 1.07	$\Delta \rho_{max} = 1.24 \text{ e } \text{\AA}^{-3}$
3215 reflections	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$
238 parameters	Extinction correction: none

29 restraintsAbsolute structure: Flack (1983), 1383 Friedel pairsPrimary atom site location: structure-invariant direct
methodsFlack parameter: 0.02 (3)Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
I1	0.77592 (5)	1.07946 (5)	0.10858 (3)	0.06792 (18)	
N1	0.4928 (5)	0.3527 (5)	0.05051 (16)	0.0360 (10)	
01	0.4372 (5)	0.3960 (5)	-0.02138 (15)	0.0465 (10)	
O2	0.6200 (5)	0.3471 (6)	0.11397 (17)	0.0600 (12)	
O3	0.2869 (6)	0.0642 (6)	0.0247 (2)	0.0713 (16)	
C1	0.5277 (6)	0.4077 (6)	0.00639 (19)	0.0341 (11)	
C2	0.6966 (6)	0.4763 (6)	0.0025 (2)	0.0359 (12)	
C3	0.7501 (6)	0.4599 (6)	0.0432 (2)	0.0396 (12)	
C4	0.6223 (7)	0.3823 (7)	0.0750 (2)	0.0411 (13)	
C5	0.7908 (7)	0.5437 (7)	-0.0339 (2)	0.0445 (13)	
Н5	0.7540	0.5577	-0.0613	0.053*	
C6	0.9429 (7)	0.5898 (7)	-0.0280 (3)	0.0563 (17)	
H6	1.0097	0.6341	-0.0522	0.068*	
C7	0.9983 (7)	0.5724 (7)	0.0123 (3)	0.0562 (18)	
H7	1.1014	0.6038	0.0149	0.067*	
C8	0.9028 (7)	0.5082 (7)	0.0499 (3)	0.0499 (15)	
H8	0.9399	0.4986	0.0778	0.060*	
C9	0.3423 (6)	0.2826 (6)	0.0706 (2)	0.0377 (11)	
Н9	0.3529	0.2611	0.1023	0.045*	
C10	0.2728 (6)	0.3867 (6)	0.0705 (2)	0.0420 (13)	
H10A	0.2273	0.3810	0.0411	0.050*	
H10B	0.1925	0.3510	0.0930	0.050*	
C11	0.3893 (6)	0.5489 (7)	0.0803 (2)	0.0380 (12)	
C12	0.4320 (7)	0.6593 (7)	0.0470 (2)	0.0442 (13)	
H12	0.3870	0.6317	0.0186	0.053*	
C13	0.5407 (8)	0.8105 (7)	0.0554 (2)	0.0519 (15)	
H13	0.5649	0.8837	0.0330	0.062*	
C14	0.6121 (7)	0.8516 (6)	0.0965 (2)	0.0449 (14)	
C15	0.5726 (7)	0.7436 (7)	0.1301 (2)	0.0455 (13)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H15	0.6206	0.7719	0.1581	0.055*	
C16	0.4634 (7)	0.5953 (7)	0.1225 (2)	0.0430 (13)	
H16	0.4377	0.5240	0.1455	0.052*	
C17	0.2436 (7)	0.1291 (7)	0.0471 (2)	0.0461 (14)	
O4	0.1059 (13)	0.0680 (14)	0.0656 (8)	0.053 (4)	0.49 (4)
C18	-0.0093 (14)	-0.0829 (17)	0.0483 (10)	0.071 (6)	0.49 (4)
H18A	0.0404	-0.1362	0.0374	0.107*	0.49 (4)
H18B	-0.0651	-0.0702	0.0240	0.107*	0.49 (4)
H18C	-0.0783	-0.1406	0.0723	0.107*	0.49 (4)
O4'	0.0968 (8)	0.0875 (16)	0.0475 (8)	0.051 (4)	0.51 (4)
C18'	-0.0090 (15)	-0.0543 (18)	0.0238 (10)	0.067 (6)	0.51 (4)
H18D	0.0251	-0.0502	-0.0067	0.100*	0.51 (4)
H18E	-0.1092	-0.0660	0.0236	0.100*	0.51 (4)
H18F	-0.0123	-0.1394	0.0392	0.100*	0.51 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0592 (3)	0.0433 (2)	0.0838 (3)	0.0125 (2)	0.0126 (3)	-0.0134 (3)
N1	0.038 (2)	0.040 (2)	0.030 (2)	0.020 (2)	0.0019 (19)	0.0005 (19)
01	0.047 (2)	0.058 (3)	0.039 (2)	0.030 (2)	-0.0060 (19)	0.0018 (19)
O2	0.062 (3)	0.082 (3)	0.042 (3)	0.040 (2)	-0.004 (2)	0.002 (2)
03	0.059 (3)	0.054 (3)	0.098 (4)	0.026 (2)	0.020 (3)	-0.017 (3)
C1	0.042 (3)	0.031 (2)	0.031 (3)	0.019 (2)	-0.002 (2)	-0.004 (2)
C2	0.036 (3)	0.028 (2)	0.045 (3)	0.018 (2)	-0.001 (2)	-0.003 (2)
C3	0.045 (3)	0.038 (3)	0.039 (3)	0.023 (2)	-0.009 (2)	-0.007 (2)
C4	0.046 (3)	0.043 (3)	0.039 (3)	0.026 (3)	-0.008 (2)	-0.005 (2)
C5	0.046 (3)	0.041 (3)	0.044 (3)	0.019 (3)	0.003 (3)	0.001 (3)
C6	0.044 (3)	0.043 (3)	0.067 (5)	0.010 (3)	0.016 (3)	0.002 (3)
C7	0.032 (3)	0.050 (4)	0.082 (6)	0.017 (3)	-0.005 (3)	-0.015 (3)
C8	0.036 (3)	0.050 (3)	0.064 (4)	0.022 (3)	-0.012 (3)	-0.009 (3)
C9	0.036 (3)	0.041 (3)	0.037 (3)	0.020 (2)	0.005 (2)	0.001 (2)
C10	0.040 (3)	0.044 (3)	0.045 (4)	0.023 (3)	0.003 (2)	-0.005 (2)
C11	0.040 (3)	0.050 (3)	0.029 (3)	0.027 (3)	0.004 (2)	0.004 (2)
C12	0.050 (3)	0.044 (3)	0.036 (3)	0.023 (3)	-0.005 (3)	-0.004 (2)
C13	0.059 (4)	0.042 (3)	0.046 (4)	0.018 (3)	0.003 (3)	0.005 (3)
C14	0.042 (3)	0.033 (3)	0.051 (4)	0.012 (2)	0.005 (3)	-0.006(2)
C15	0.047 (3)	0.049 (3)	0.040 (3)	0.024 (3)	-0.007 (3)	-0.014 (3)
C16	0.042 (3)	0.047 (3)	0.040 (3)	0.022 (3)	0.005 (2)	0.005 (2)
C17	0.046 (3)	0.036 (3)	0.057 (4)	0.021 (3)	0.001 (3)	-0.005 (3)
O4	0.044 (5)	0.039 (5)	0.067 (8)	0.015 (4)	0.013 (5)	-0.002 (5)
C18	0.064 (8)	0.064 (8)	0.076 (10)	0.024 (6)	0.007 (7)	-0.023 (7)
O4'	0.040 (5)	0.046 (6)	0.061 (8)	0.017 (4)	0.002 (4)	-0.014 (5)
C18'	0.054 (8)	0.044 (7)	0.082 (10)	0.008 (5)	0.008 (6)	-0.013 (7)
Geometric para	meters (Å, °)					

I1—C14	2.091 (6)	C10—H10A	0.9700
N1—C1	1.391 (7)	C10—H10B	0.9700

N1—C4	1.393 (7)	C11—C12	1.386 (9)
N1—C9	1.448 (7)	C11—C16	1.407 (8)
O1—C1	1.191 (7)	C12—C13	1.389 (9)
O2—C4	1.201 (8)	C12—H12	0.9300
O3—C17	1.162 (7)	C13—C14	1.368 (10)
C1—C2	1.494 (8)	С13—Н13	0.9300
C2—C3	1.363 (8)	C14—C15	1.377 (9)
C2—C5	1.371 (9)	C15—C16	1.367 (9)
C3—C8	1.383 (8)	C15—H15	0.9300
C3—C4	1.469 (9)	C16—H16	0.9300
C5—C6	1.379 (9)	C17—O4	1.327 (9)
С5—Н5	0.9300	C17—O4'	1.327 (9)
C6—C7	1.364 (11)	O4—C18	1.474 (9)
С6—Н6	0.9300	C18—H18A	0.9600
С7—С8	1.402 (11)	C18—H18B	0.9600
С7—Н7	0.9300	C18—H18C	0.9600
С8—Н8	0.9300	O4'—C18'	1.469 (9)
C9—C17	1.530 (8)	C18'—H18D	0.9600
C9—C10	1.531 (8)	C18'—H18E	0.9600
С9—Н9	0.9800	C18'—H18F	0.9600
C10—C11	1.495 (8)		
C1—N1—C4	112.1 (5)	C11—C10—H10B	109.2
C1—N1—C9	125.1 (5)	С9—С10—Н10В	109.2
C4—N1—C9	122.6 (5)	H10A—C10—H10B	107.9
01—C1—N1	125.2 (5)	C12—C11—C16	117.3 (6)
O1—C1—C2	129.6 (5)	C12—C11—C10	120.3 (5)
N1—C1—C2	105.2 (5)	C16-C11-C10	122.4 (5)
C3—C2—C5	122.2 (5)	C11—C12—C13	121.2 (6)
C3—C2—C1	107.8 (5)	C11—C12—H12	119.4
C5—C2—C1	130.0 (6)	C13—C12—H12	119.4
C2—C3—C8	121.7 (6)	C14—C13—C12	120.0 (6)
C2—C3—C4	109.4 (5)	C14—C13—H13	120.0
C8—C3—C4	128.8 (6)	C12-C13-H13	120.0
O2—C4—N1	123.9 (6)	C13—C14—C15	119.8 (6)
O2—C4—C3	130.8 (6)	C13—C14—I1	119.6 (5)
N1—C4—C3	105.4 (5)	C15—C14—I1	120.6 (5)
C2—C5—C6	116.7 (6)	C16-C15-C14	120.6 (6)
С2—С5—Н5	121.6	C16-C15-H15	119.7
С6—С5—Н5	121.6	C14—C15—H15	119.7
C7—C6—C5	122.0 (6)	C15-C16-C11	121.1 (6)
С7—С6—Н6	119.0	С15—С16—Н16	119.5
С5—С6—Н6	119.0	C11—C16—H16	119.5
C6—C7—C8	121.2 (6)	O3—C17—O4	125.1 (8)
С6—С7—Н7	119.4	O3—C17—O4'	120.3 (8)
С8—С7—Н7	119.4	O4—C17—O4'	25.8 (7)
C3—C8—C7	116.1 (6)	O3—C17—C9	126.4 (6)
С3—С8—Н8	121.9	O4—C17—C9	106.7 (7)
С7—С8—Н8	121.9	O4'—C17—C9	112.2 (7)
N1—C9—C17	107.7 (4)	C17—O4—C18	116.4 (9)

supplementary materials

N1—C9—C10	113.3 (5)	C17—O4'—C18'	117.4 (9)
C17—C9—C10	114.0 (5)	O4'—C18'—H18D	109.5
N1—C9—H9	107.2	O4'—C18'—H18E	109.5
С17—С9—Н9	107.2	H18D—C18'—H18E	109.5
С10—С9—Н9	107.2	O4'—C18'—H18F	109.5
C11—C10—C9	111.9 (5)	H18D—C18'—H18F	109.5
C11—C10—H10A	109.2	H18E—C18'—H18F	109.5
С9—С10—Н10А	109.2		
C4—N1—C1—O1	179.5 (5)	C1—N1—C9—C10	-58.6 (7)
C9—N1—C1—O1	-4.8 (8)	C4—N1—C9—C10	116.7 (6)
C4—N1—C1—C2	1.2 (6)	N1-C9-C10-C11	-38.7 (7)
C9—N1—C1—C2	176.9 (5)	C17—C9—C10—C11	-162.4 (5)
O1—C1—C2—C3	-178.8 (6)	C9-C10-C11-C12	112.3 (6)
N1-C1-C2-C3	-0.6 (6)	C9-C10-C11-C16	-65.6(7)
O1—C1—C2—C5	0.2 (10)	C16-C11-C12-C13	-1.6 (9)
N1-C1-C2-C5	178.4 (5)	C10-C11-C12-C13	-179.6 (6)
C5—C2—C3—C8	-1.1 (9)	C11-C12-C13-C14	2.6 (10)
C1—C2—C3—C8	177.9 (5)	C12-C13-C14-C15	-2.0 (10)
C5—C2—C3—C4	-179.3 (5)	C12-C13-C14-I1	179.8 (5)
C1—C2—C3—C4	-0.2 (6)	C13-C14-C15-C16	0.5 (9)
C1—N1—C4—O2	179.0 (6)	I1-C14-C15-C16	178.7 (4)
C9—N1—C4—O2	3.3 (9)	C14-C15-C16-C11	0.4 (9)
C1—N1—C4—C3	-1.4 (6)	C12-C11-C16-C15	0.2 (8)
C9—N1—C4—C3	-177.1 (5)	C10-C11-C16-C15	178.1 (5)
C2—C3—C4—O2	-179.5 (6)	N1—C9—C17—O3	15.4 (9)
C8—C3—C4—O2	2.5 (11)	C10-C9-C17-O3	142.0 (7)
C2—C3—C4—N1	0.9 (6)	N1-C9-C17-O4	-179.1 (12)
C8—C3—C4—N1	-177.0 (6)	C10-C9-C17-O4	-52.6 (13)
C3—C2—C5—C6	2.3 (9)	N1—C9—C17—O4'	-152.3 (13)
C1—C2—C5—C6	-176.6 (6)	C10-C9-C17-O4'	-25.7 (14)
C2—C5—C6—C7	-1.3 (9)	O3—C17—O4—C18	-14 (2)
C5—C6—C7—C8	-0.8 (10)	O4'—C17—O4—C18	74 (2)
C2—C3—C8—C7	-1.0 (9)	C9—C17—O4—C18	-179.4 (13)
C4—C3—C8—C7	176.8 (6)	O3—C17—O4'—C18'	8(2)
C6—C7—C8—C3	2.0 (10)	O4—C17—O4'—C18'	-101 (3)
C1—N1—C9—C17	68.4 (6)	C9—C17—O4'—C18'	176.9 (12)
C4—N1—C9—C17	-116.4 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!$
C12—H12···O2 ⁱ	0.93	2.43	3.236 (8)	145
C8—H8…O1 ⁱⁱ	0.93	2.46	3.379 (8)	170
Symmetry codes: (i) y , $-x+y+1$, $z-1/6$; (ii) $x-y+1$, x , $z+1/6$.				

Fig. 2

